
RELIABLE DATA

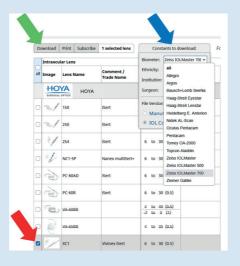
IOLCon's data is contributed by two groups:

- > IOL manufacturers maintain their IOL entries via secure, password-protected access.
- ➤ Ophthalmic surgeons can upload clinical data to receive personalized, optimized constants.

Several biometer manufacturers (e.g., IOLMaster® 700 (Zeiss), Anterion® (Heidelberg Engineering), REVO (Optopol), Galilei G5 (Ziemer) and OA-2000 (Tomey)), support direct IOLCon integration, allowing seamless download of IOL constants and specifications.

A traffic-light color system visually indicates the quality of optimized constants based on available clinical data.

Detailed tooltips provide further explanation about a specific optimization.


		18.379			1	
5.20	≤ 0.5 ≤ 1.0	of predicted refi D: 67.4 % D: 91.9 %	action:			1
	Inter	D: 100 % rquartile range: ulated from 5262		results		
5.20	3	1.42	118.3	3 879		,
				≤ 0.5 D: ≤ 1.0 D: ≤ 2.0 D: Interqua	predicted refraction: 67.4 % 91.9 %	ults.

ADVANCED SEARCH FUNCTIONS

 ${\sf IOLCon}$ offers versatile search options — by ${\sf IOL}$ or

biometer manufacturer, material, geometry, patient ethnicity, refractive power range, and both nominal and optimized constants.

All data can be downloaded to the biometer or printed in a userfriendly layout.

Visible columns:								
O Important specifications								
All specifications								
O Constants only								
☐ Specifications								
☐ Available powers								
☑ Manufacturer constants								
Optimized constants								

IN BRIEF

- ➢ IOLCon (founded 2017) is a globally available, reliable database for optimized IOL constants and specifications.
- Ophthalmic surgeons receive individually optimized constants using contemporary optimization strategies.
- ➤ The LPC supports IOL power selection in cataract surgery.
- QR codes on biometer printouts simplify both IOL calculation and documentation.
- ➤ IOLCon's services are free of charge for ophthalmic surgeons.

IOLCon meets the demands of modern IOL data management and is an indispensable tool for cataract surgeons.

CONTACT:

Prof. Dr. Achim Langenbucher
Institute of Experimental
Ophthalmology
Kirrberger Str. 100
66424 Homburg/Saar (Germany)
achim.langenbucher@uni-saarland.de

REGISTER FOR IOLCON:

https://www.IOLCon.org

Flyer designed by Dr. Sibylle Scholtz, Wortflut UG (haftungsbeschränkt), https://www.wortflut.com/, info@wortflut.com, (May 2025)

Welcome to

10L Con

The Road to Reliable IOL Power Calculation

A comprehensive database for IOL specifications

IOLCON'S SUPPORT

Founded in 2017, the Internet database IOLCon (https://www.iolcon.org) is a globally accessible, reliable source for optimized intraocular lens (IOL) specifications and constants.

The Lens Power Calculator (LPC), based on the modern Castrop formula, is available directly, free of charge, for ophthalmic surgeons via IOLCon's website.

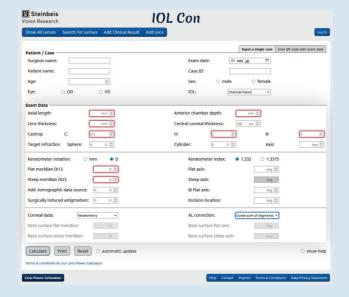
				Steinb			10	L Co	n							
				Show All Lee	Search For Li	ennes Add Clinical	Result Add Lens					Login				
	teed Print	Subscribe of tensors										- 1	Long la.	* Displace	menu or resume wh	ere pour left off th
	betranoular to	***		Manufacture	Optimized / ULIS Con	stands				Our Optimized Cons	lants					
	Snage	Loro Name	Commerci/ Trade Name	Number (A)	In/a/al	(pace)	Noticity 1 (07)	GRA/T (A)	(LF / GP)	Height (m/m/m/m)	(pACE)	Notatey 1 (01)	GRIQT (A)	(C/m/R)	Cooke KE (N)	(ACD)
ŧ	HOYA	HOYA														
Ī				144		***	144	1107								
		MC1	Vuinex Set	118.9	1 1.046 0.255 0.229	1 52	1908	119.193	1.00	1 1,3468 8,2547 8,2001	1 52	1908	119.95	0.3548 0.1567 0.1548	119200	4.84
	8/	ACT-OF	Voines multillers	1988	1 -1.046 0.215 0.229	1 12	1906	77578	150	1 1368 5290 5200	127	188	778,762	1 0,000 0,1007 0,1008	1920	* 434
	*/	en	Wirek Set	1983	0.255 0.229	1 52	1.000	115.100	1.00	1 1,000 82547 92001	52	1008	" 1939	1 5,3049 5,1067 5,1048	119201	484
	•/	era.	Welnes York	118.9	0.230 0.239	32	1308	119.793	136	1 6740 1294 1294	5.861	188	119.027		119394	1
	*/	0014 SP	Vuinex Toric multifiert	118.9	-1.046 0.255 0.229	5.7	1,908	119.193	136	0.740 0.254 0.2140	5.601	1,00	119.027		179004	
		on-ex	Vvines Impress pretreded in multiliers	790	1 -1.046 0.215 0.229	12	1,606	798.798	150	9.3092 9.3092 9.3092	3304	129	11690		11836	1
	00	mer/mer	Whites General Forc / Writes General Plus Forc pretiaded in multifers	79.0	0.344 0.342	554	1,799	718.998	198	1.000 1.007 1.102	5548	1789	118.966		,118.002	1
	jê.	eng/mer	Women Germatric / Women Germatric Plus professional in multifliers	19.0	0.344 0.346	5.548	1,799	118.998	198	1 43/99 83/67 83/62	554	1,799	118.968		118,862	
	1	on-se	Wines multiplen	118,9	1 -1.046 0.255 0.229	10	1,908	194.95	156	1 -1,568 8,2567 8,2091	S)	1998	119.965	1 1300 6/007 0/008	119281	484
	2	YN-8088		1987	0.8 0.1	3.0	129	716.9								
	2	TN-6000R		775.4	1.06 0.4 0.1	524	146	1185								
		19-6168		1983	0.0 0.0 0.7	5.65	131	1167								
	umank	ptics HumanOptic	1													
	-6	46		1184	0.000 0.000	546	* **	****	148							
	9	ASPER AN		118.4	0.152 0.209	539	140	1187	139	1,000 1,000	540	1.658	11838		118756	
	-25	ACCUSE AN Exhauster	Produced Submission autobasting		1 04	,		192	1.79	1 1234	1	1	1			4

In addition to these valuable tools, IOLCon offers further services that will simplify IOL documentation.

COMPREHENSIVE IOL INFORMATION

IOLCon provides, not only an overview of the continually expanding range of IOLs, but also key parameters and specifications. Using modern algorithms and standards, optimized IOL constants are regularly updated.

These constants are essential for linking biometric measurements with the effective lens position (ELP). An accurate ELP prediction is crucial to determine the optimal IOL power for each patient.


OPTIMIZING CONSTANTS

IOLCon applies an "intelligent IOL constant optimization" approach¹. Statistical methods account for the accuracy of measuring devices (e.g., biometers). Optimized constants are available for several published formulae, including Haigis, Hoffer Q, Holladay 1, SRK/T, and Castrop.

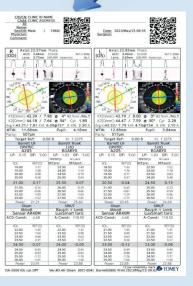
The Castrop formula^{2,3}, already available in a toric variant, predicts the IOL position regressively, using historical clinical data and modern imaging techniques that precisely measure all ocular distances. This enables more reliable calculations, even for eyes outside normal biometric ranges, which might create problems when using classic formulae.

THE LENS POWER CALCULATOR (LPC)

Accessible via the "LPC" button on IOLCon's homepage, the LPC supports surgeons in selecting the appropriate IOL power for cataract surgery.

It is intended to complement detailed eye examinations and preoperative measurements. However, the LPC results are not a substitute for clinical judgment and should not be considered a definitive treatment guidance. Users must independently assess the suitability of the IOL selection. The accuracy of the LPC is not guaranteed in every case. The tool is provided without any warranty, and users are fully responsible for the surgical outcome.

The LPC is subject to copyright and is protected under international agreements and German and foreign laws. It is intended exclusively for scientific applications.


QR-CODES IN BIOMETER PRINTOUTS

Biometer manufacturers are integrating QR codes into their printouts which contain all the data

calculate the corresponding IOL.
These QR codes can be scanned using a hand-held reader or a smartphone.

required to

When the LPC on the IOLCon page is active, the data from the scanned code is

automatically transferred, allowing instant calculation. The user only needs to select the respective IOL model.

Show All Lenses Search For Lenses Ac	ld Clinical Result Add Lens		L
Patient / Case		Input a s	ingle case Scan QR code with exam do
Surgeon name:	Exam date	02.04.2024	0
Patient name:	Case ID:	21:48:35	
Age: 0	Sexc	O male	female
Eye: • OD O	S IOL:	(manual input)	v
Exam Data			
Axial length: 22.57 mm	Anterior chamber	depth: 3.44 mm	0
Lens thickness: 3.72 mm	© Central corneal th	ickness: 507 µm	0
Castrop C: 0.4	п н:	0 [0]	R: 0
Target refraction Sphere: 0 0	Cylinder:	0 0 0	Axis: deg
Keratometer notation: • mm	O D Keratomet	ter index: # 1.332	0 1.3375
Flat meridian (R1): 7.98 m	m 0 Flat axis:	4	deg [0]
Steep meridian (R2): 7.64 m	m 🔘 Steep axis		4 deg
Add. tomographic data source: 0	© Flat axis		deg [0]
Surgically induced astigmatism:	D D Incision lo	cation:	deg [0]
Corneal data: Keratometry	→ AL correct	ion: Cooke sum o	f segments v
Back surface flat meridian:	m 3 Back surfa	ce flat axis:	deg C
Back surface steep meridian:	m 0 Back surfa	ce steep axis:	deg
Calculate Print Reset aut	omatic update		□ show b

These QR codes can also be used for patient documentation.

¹ Scholtz SK, Schwemm M, Eppig T, Cayless A, Langenbucher A. Benefits and New Features of a Modern International Internet Database "IOLCon' for Updated and Optimized IOL Constants and IOL Specifications. Klin Monbl Augenheilkd. 2021 Sep;238(9):996-1003

² Langenbucher et al, Considerations on the Castrop formula for calculation of intraocular lens power, PLoS One, 2021, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172026/

³ Langenbucher et al, The Castrop formula for calculation of toric intraocular lenses, Graefe's Archive for Clinical and Experimental Ophthalmology, November 2021, https://link.springer.com/article/10.1007/s00417-021-05287-w